Precision Health Are we ready to use genomics to promote behavioral change?

Laura Jean Bierut, MD Alumni Endowed Professor of Psychiatry

June 10th, 2025

Precision Prevention Table of Contents

Chapter 1: The new genetic world

Chapter 2: Nicotine use disorder requires smoking initiation

Chapter 3: Variation in nicotinic acetylcholine receptors and nicotine metabolism

Chapter 4: Cessation – the ultimate goal

Chapter 5: Precision health

Acknowledgements

Chapter 1

The new genetic world

2005 Time Zero – New Era in Genetic Studies

April 15, 2005

2005 Time Zero – New Era in Genetic Studies

April 15, 2005

GENETICS

Was the Human Genome Project Worth the Effort?

Stephen P. Daiger

ne of the promises of the Human

fected individuals. AMD afflicts more than Genome Project was that it would 10 million Americans and is the leading

2005 Time Zero – New Era in Genetic Studies

000	
0000	
0000	

	/**************************************
	**** ********************************
000	
	a fan de service de se
000	
000	000000000000000000000000000000000000000

NHGRI-EBI Catalog
Genome Wide Significant Associations
December 2018

				Genome	Wide Signi Decembe	ficant Asso er 2018	ciations
							CTTP-

Washington University School of Medicine in St. Louis

Washington University School of Medicine in St. Louis

Chapter 2

Nicotine use disorder requires smoking initiation

Environmental and genetic factors influence each step in the transition to addiction

Never Use

Genetic factors strongly influence the transition to nicotine use disorder

Nicotine Use Disorder

Chapter 3

Variation in genes for nicotinic acetylcholine receptors and nicotine metabolism are the strongest contributors to smoking behaviors.

Novel genes identified in a high-density genome wide association study for nicotine dependence

Laura Jean Bierut^{1,*}, Pamela A.F. Madden¹, Naomi Breslau², Eric O. Johnson³, Dorothy Hatsukami⁴, Ovide F. Pomerleau⁵, Gary E. Swan⁶, Joni Rutter⁷, Sarah Bertelsen¹, Louis Fox¹, Douglas Fugman⁸, Alison M. Goate¹, Anthony L. Hinrichs¹, Karel Konvicka⁹, Nicholas G. Martin¹⁰, Grant W. Montgomery¹⁰, Nancy L. Saccone¹, Scott F. Saccone¹, Jen C. Wang¹, Gary A. Chase¹¹, John P. Rice¹ and Dennis G. Ballinger⁹

Department of Psychiatry, Washington University Triangle Park, NC, USA, ⁴University of Minnesota, University, Piscataway, NJ, USA, ⁹Perlegen Science

Human Molecular Genetics 2007

Cholinergic nicotinic receptor genes 63110, USA, ²Michigan State University, East Lans implicated in a nicotine dependence USA, ⁶SRI International, Menlo Park, CA, USA, ⁷N association study targeting 348 candidate Research, Herston QLD, Australia and ¹¹Penn Sta genes with 3713 SNPs

> Scott F. Saccone^{1,*,†}, Anthony L. Hinrichs^{1,†}, Nancy L. Saccone¹, Gary A. Chase³, Karel Konvicka⁴, Pamela A.F. Madden¹, Naomi Breslau⁵, Eric O. Johnson⁶, Dorothy Hatsukami⁷, Ovide Pomerleau⁸, Gary E. Swan⁹, Alison M. Goate^{1,2}, Joni Rutter¹⁰, Sarah Bertelsen¹, Louis Fox¹, Douglas Fugman¹¹, Nicholas G. Martin¹², Grant W. Montgomery¹², Jen C. Wang¹, Dennis G. Ballinger⁴, John P. Rice^{1,2} and Laura Jean Bierut¹

Molecular Psychiatry (2008) 13, 368-373 © 2008 Nature Publishing Group All rights reserved 1359-4184/08

www.nature.com/mp

IMMEDIATE COMMUNICATION

α -5/ α -3 nicotinic receptor subunit alleles increase risk for heavy smoking

W Berrettini^{1,2,3}, X Yuan^{2,3}, F Tozzi^{2,3}, K Song^{2,3}, C Francks^{2,3}, H Chilcoat⁴, D Waterworth^{2,3}, P Muglia^{2,3,5} and V Mooser^{2,3}

¹Department of Psychiatry, University of Pennsylvania Schoo GlaxoSmithKline, Verona, Italy; 4Worldwide Epidemiology, Gl of Toronto, Toronto, ON, Canada

Discovery Medicine, GlaxoSmithKline, Upper Merion, PA, U A variant associated with nicotine dependence, lung cancer and peripheral arterial disease

Thorgeir E. Thorgeirsson^{1*}, Frank Geller^{1*}, Patrick Sulem^{1*}, Thorunn Rafnar^{1*}, Anna Wiste^{1,2}, Kristinn P. Magnusson¹, Andrei Manolescu¹, Gudmar Thorleifsson¹, Hreinn Stefansson¹, Andres Ingason¹, Simon N. Stacey¹, Jon T. Bergthorsson¹, Steinunn Thorlacius¹, Julius Gudmundsson¹, Thorlakur Jonsson¹, Margret Jakobsdottir¹, Jona Saemundsdottir¹, Olof Olafsdottir¹, Larus J. Gudmundsson¹, Gyda Bjornsdottir¹, Kristleifur Kristjansson¹, Halla Skuladottir³, Helgi J. Isaksson⁴, Tomas Gudbjartsson⁵, Gregory T. Jones⁸, Thomas Mueller⁹, Anders Gottsäter¹⁰, Andrea Flex¹¹, Katja K. H. Aben^{12,13}, Femmie de Vegt¹², Peter F. A. Mulders¹⁴ Dolores Isla¹⁵, Maria J. Vidal¹⁵, Laura Asin¹⁶, Berta Saez¹⁷, Laura Murillo¹⁸, Thorsteinn Blondal¹⁹, Halldor Kolbeinsson⁶, Jon G. Stefansson⁶, Ingunn Hansdottir²⁰, Valgerdur Runarsdottir²⁰, Roberto Pola^{11,21}, Bengt Lindblad¹⁰, Andre M. van Rij⁸, Benjamin Dieplinger⁹, Meinhard Haltmayer⁹, Jose I. Mayordomo^{15,16,17}, Lambertus A. Kiemeney^{12,13,14}, Stefan E. Matthiasson²², Hogni Oskarsson²³, Thorarinn Tyrfingsson²⁰ Daniel F. Gudbjartsson¹, Jeffrey R. Gulcher¹, Steinn Jonsson⁷, Unnur Thorsteinsdottir^{1,22}, Augustine Kong¹ & Kari Stefansson^{1,22} Nature. 2008

LETTERS

genetics

Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior Thorgeirsson et al., 2010

Smoking is a common risk factor for many diseases¹. We

observed at both 8p11 (rs6474412[T], odds ratio (OR) = 1.09,

conducted genome-wide associat number of cigarettes smoked per (n = 31,266) and smoking initiati from the ENGAGE Consortium. I selected SNPs with in silico replie Genetics (TAG) and Glaxo Smith cohorts (n = 45.691 smokers) and third sample of European ancestr genomic regions associated with C previously identified SNPs at 15g (effect size = 0.80 CPD, $P = 2.4 \times$ 8p11, represented by rs4105144[$P = 2.2 \times 10^{-12}$) and rs6474412-T $P = 1.4 \times 10^{-8}$), respectively. Amo associated loci are genes encodin enzymes (CYP2A6 and CYP2B6) receptor subunits (CHRNB3 and been highlighted in previous stud dependence²⁻⁴. Nominal associat

Genome-wide meta-analyses identify multiple loci associated with smoking behavior TAG Consortium, 2010

The Tobacco and Genetics Con

Consistent but indirect evidence has in smoking behavior^{1,2}. We report n smoking phenotypes within cohorts Consortium (n = 74,053). We also p Network of Genetic and Genomic E and Oxford-GlaxoSmithKline (Ox-C the 15 most significant regions (n> three loci associated with number o per day. The strongest association w SNP in the nicotinic receptor gene (1.03, standard error (s.e.) = 0.053, iSNPs (rs1329650[G], $\beta = 0.367$, s.e

Meta-analysis and imputation refines the association of 15q25 with smoking quantity Liu et al., 2010

Smoking is a leading global cause of disease and mortality¹. We established the Oxford-GlaxoSmithKline study (Ox-GSK) to perform a genome-wide meta-analysis of SNP association with smoking-related behavioral traits. Our final data set included 41,150 individuals drawn from 20 disease, population and control cohorts. Our analysis confirmed an effect on smoking quantity at a locus on 15q25 ($P = 9.45 \times 10^{-19}$) that includes *CHRNA5*, *CHRNA3* and *CHRNB4*, three genes encoding neuronal nicotinic acetylcholine receptor subunits. We used data from the 1000 Genomes project to investigate the region using imputation, which allowed for analysis of virtually all common SNPs in the region and offered a fivefold increase in marker density over HapMap2 (ref. 2)

located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3.

Smoking behavior and nicotine dependence are multifactorial traits with substantial genetic influences³. There is an urgent need to better understand the molecular neurobiology of nicotine dependence in order to design targeted, more effective therapies⁴. Recently, genome-wide association studies (GWAS) have established one locus associated with nicotine dependence and smoking quantity, which implicates a cluster of three genes, *CHRNA5*, *CHRNA3* and *CHRNB4* on chromosome 15q25, which encode neuronal nicotinic acetylcholine receptor subunits^{5–9}. This locus

Genome Wide Association with Cigarettes per Day A Proxy for Nicotine Use Disorder

Chapter 4

Cessation – the ultimate goal

Smoking Cessation

Genetic Variants Predict Smoking Cessation Success

Article

Interplay of Genetic Risk Factors (CHRNA5-CHRNA3-CHRNB4) and Cessation Treatments in Smoking Cessation Success

Li-Shiun Chen, M.D., M.P.H., Sc.D.
Timothy B. Baker, Ph.D.
Megan E. Piper, Ph.D.
Naomi Breslau, Ph.D.

Objective: Smoking is highly intractable, and the genetic influences on cessation are unclear. Identifying the genetic factors affecting smoking cessation could elucidate the nature of tobacco dependence, enhance risk assessment, and support development of treatment algorithms. This study tested whether variants in the nicotinic recenter game cluster *CUDIALS*

Results: The genetic variants in the *CHRNA5-CHRNA3-CHRNB4* region that predict nicotine dependence also predicted a later age at smoking cessation in the community sample. In the smoking cessation trial, haplotype predicted abstinence at end of treatment in individuals receiving placebo but not among individuals re-

Genetic Variation *(CHRNA5)*, Medication (Combination Nicotine Replacement Therapy vs. Varenicline) and Smoking Cessation^{*}

Li-Shiun Chen^{1,2}, Timothy B. Baker³, Douglas Jorenby³, Megan Piper³, Nancy Saccone⁴, Eric Johnson⁵, Naomi Breslau⁶, Dorothy Hatsukami⁷, Robert M. Carney¹, and Laura J. Bierut^{1,2}

JOURNAL of the NATIONAL CANCER INSTITUTE

CHRNA5 Risk Variant Predicts Delayed Smoking Cessation and Earlier Lung Cancer Diagnosis—A Meta-Analysis

Li-Shiun Chen, Rayjean J. Hung, Timothy Baker, Amy Horton, Rob Culverhouse, Nancy Saccone, Iona Cheng, Bo Deng, Younghun Han, Helen M. Hansen, Janet Horsman, Claire Kim, Sharon Lutz, Albert Rosenberger, Katja K. Aben, Angeline S. Andrew, Naomi Breslau, Shen-Chih Chang, Aida Karina Dieffenbach, Hendrik Dienemann, Brittni Frederiksen, Jiali Han, Dorothy K. Hatsukami, Eric O. Johnson, Mala Pande, Margaret R. Wrensch, John McLaughlin, Vidar Skaug, Henricus F. van der Heijden, Jason Wampfler, Angela Wenzlaff, Penella Woll, Shanbeh Zienolddiny, Heike Bickeböller, Hermann Brenner, Eric J. Duell, Aage Haugen, Joachim Heinrich, John E. Hokanson, David J. Hunter, Lambertus A. Kiemeney, Philip Lazarus, Loic Le Marchand, Geoffrey Liu, Jose Mayordomo, Angela Risch, Ann G. Schwartz, Dawn Teare, Xifeng Wu, John K. Wiencke, Ping Yang, Zuo-Feng Zhang, Margaret R. Spitz, Peter Kraft, Christopher I. Amos, Laura J. Bierut

Median age of smoking cessation

JNCI

Low genetic risk 52 years High genetic risk 56 years

Median age of lung cancer diagnosis

Low genetic risk 65 years High genetic risk 61 years

Chapter 5

On the road to precision health

The Challenge...

moving science into the community

biobank

The world's most important health research database

Data drives discovery. We have curated a uniquely powerful biomedical database that can be accessed globally by approved researchers. Use our secure cloud-based platform to explore de-identified data from half a million UK Biobank participants and enable new discoveries to improve public health.

About us

		Smoking status		
	Total	Current	Former	
Ν	142,973	40,988	101,985	
Age (years)	57.5 ± 7.9	54.8 ± 8.1	58.6 ± 7.5	
Sex, n (%)				
Female	65,383 (45.7)	19,138 (46.7)	46,245 (45.3)	
Male	77 <i>,</i> 590 (54.3)	21,850 (53.3)	55 <i>,</i> 740 (54.7)	
Education (years)	13.2 ± 5.1	12.6 ± 5.0	13.5 ± 5.2	
Age started smoking (years)	17.3 ± 3.6	17.5 ± 4.3	17.2 ± 3.3	
Duration smoked (years)	26.6 ± 12.9	37.3 ± 9.0	22.3 ± 11.6	
Pack years of smoking	24.5 ± 19.2	29.9 ± 19.3	22.3 ± 18.8	

		Smoking status		
	Total	Current	Former	
Ν	142,973	40 <i>,</i> 988	101,985	
Age (years)	57.5 ± 7.9	54.8 ± 8.1	58.6 ± 7.5	
Sex, n (%)				
Female	65,383 (45.7)	19,138 (46.7)	46,245 (45.3)	
Male	77,590 (54.3)	21,850 (53.3)	55,740 (54.7)	
Education (years)	13.2 ± 5.1	12.6 ± 5.0	13.5 ± 5.2	
Age started smoking (years)	17.3 ± 3.6	17.5 ± 4.3	17.2 ± 3.3	
Duration smoked (years)	26.6 ± 12.9	37.3 ± 9.0	22.3 ± 11.6	
Pack years of smoking	24.5 ± 19.2	29.9 ± 19.3	22.3 ± 18.8	

		Smoking status		
	Total	Current	Former	
Ν	142,973	40,988	101,985	
Age (years)	57.5 ± 7.9	54.8 ± 8.1	58.6 ± 7.5	
Sex, n (%)				
Female	65,383 (45.7)	19,138 (46.7)	46,245 (45.3)	
Male	77,590 (54.3)	21,850 (53.3)	55,740 (54.7)	
Education (years)	13.2 ± 5.1	12.6 ± 5.0	13.5 ± 5.2	
Age started smoking (years)	17.3 ± 3.6	17.5 ± 4.3	17.2 ± 3.3	
Duration smoked (years)	26.6 ± 12.9	37.3 ± 9.0	22.3 ± 11.6	
Pack years of smoking	24.5 ± 19.2	29.9 ± 19.3	22.3 ± 18.8	

		Smoking status		
	Total	Current	Former	
Ν	142,973	40,988	101,985	
Age (years)	57.5 ± 7.9	54.8 ± 8.1	58.6 ± 7.5	
Sex, n (%)				
Female	65,383 (45.7)	19,138 (46.7)	46,245 (45.3)	
Male	77,590 (54.3)	21,850 (53.3)	55,740 (54.7)	
Education (years)	13.2 ± 5.1	12.6 ± 5.0	13.5 ± 5.2	
Age started smoking (years)	17.3 ± 3.6	17.5 ± 4.3	17.2 ± 3.3	
Duration smoked (years)	26.6 ± 12.9	37.3 ± 9.0	22.3 ± 11.6	
Pack years of smoking	24.5 ± 19.2	29.9 ± 19.3	22.3 ± 18.8	

		Smoking status		
	Total	Current	Former	
Ν	142,973	40,988	101,985	
Age (years)	57.5 ± 7.9	54.8 ± 8.1	58.6 ± 7.5	
Sex, n (%)				
Female	65,383 (45.7)	19,138 (46.7)	46,245 (45.3)	
Male	77,590 (54.3)	21,850 (53.3)	55,740 (54.7)	
Education (years)	13.2 ± 5.1	12.6 ± 5.0	13.5 ± 5.2	
Age started smoking (years)	17.3 ± 3.6	17.5 ± 4.3	17.2 ± 3.3	
Duration smoked (years)	26.6 ± 12.9	37.3 ± 9.0	22.3 ± 11.6	
Pack years of smoking	24.5 ± 19.2	29.9 ± 19.3	22.3 ± 18.8	

		Smoking status		
	Total	Current	Former	
Ν	142,973	40,988	101,985	
Age (years)	57.5 ± 7.9	54.8 ± 8.1	58.6 ± 7.5	
Sex, n (%)				
Female	65,383 (45.7)	19,138 (46.7)	46,245 (45.3)	
Male	77,590 (54.3)	21,850 (53.3)	55,740 (54.7)	
Education (years)	13.2 ± 5.1	12.6 ± 5.0	13.5 ± 5.2	
Age started smoking (years)	17.3 ± 3.6	17.5 ± 4.3	17.2 ± 3.3	
Duration smoked (years)	26.6 ± 12.9	37.3 ± 9.0	22.3 ± 11.6	
Pack years of smoking	24.5 ± 19.2	29.9 ± 19.3	22.3 ± 18.8	

How to apply genetic knowledge into precision health

• Complex behaviors and diseases occur as a result of many genomic variants, paired with environmental influences.

• A polygenic score tells you how a person's genomic risk compares to others.

Across a population, a polygenic score is a normal distribution

Over 100,000

 variants
 contribute to
 our genetic
 profile.

People with a higher polygenic risk are more likely to continue smoking at age 40, 50, and 60

Polygenic	Proportio	n continued	smoking
score decile	Age 40	Age 50	Age 60
Bottom 10%	0.41	0.18	0.04
10-20%	0.42	0.20	0.05
20-30%	0.44	0.21	0.06
30-40%	0.47	0.23	0.07
40-50%	0.50	0.28	0.10
50-60%	0.55	0.34	0.14
60-70%	0.62	0.44	0.24
70-80%	0.74	0.59	0.41
80-90%	0.86	0.78	0.67
Top 10%	0.96	0.93	0.90

People with a higher polygenic risk are more likely to continue smoking at age 40, 50, and 60

Polygenic	Proportio	on continued	smoking
score decile	Age 40	Age 50	Age 60
Bottom 10%	0.41	0.18	0.04
10-20%	0.42	0.20	0.05
20-30%	0.44	0.21	0.06
30-40%	0.47	0.23	0.07
40-50%	0.50	0.28	0.10
50-60%	0.55	0.34	0.14
60-70%	0.62	0.44	0.24
70-80%	0.74	0.59	0.41
80-90%	0.86	0.78	0.67
Top 10%	0.96	0.93	0.90

People with a higher polygenic risk are more likely to continue smoking at age 40, 50, and 60

Polygenic	Proportio	n continued	smoking
score decile	Age 40	Age 50	Age 60
Bottom 10%	0.41	0.18	0.04
10-20%	0.42	0.20	0.05
20-30%	0.44	0.21	0.06
30-40%	0.47	0.23	0.07
40-50%	0.50	0.28	0.10
50-60%	0.55	0.34	0.14
60-70%	0.62	0.44	0.24
70-80%	0.74	0.59	0.41
80-90%	0.86	0.78	0.67
Top 10%	0.96	0.93	0.90

We selected a threshold of the lower 60% of risk

Polygenic	Proportion continued smoking		
score decile	Age 40	Age 50	Age 60
Bottom 10%	0.41	0.18	0.04
10-20%	0.42	0.20	0.05
20-30%	0.44	0.21	0.06
30-40%	0.47	0.23	0.07
40-50%	0.50	0.28	0.10
50-60%	0.55	0.34	0.14
60-70%	0.62	0.44	0.24
70-80%	0.74	0.59	0.41
80-90%	0.86	0.78	0.67
Top 10%	0.96	0.93	0.90

The lowest polygenic score group lowest 60%, by age 40 half have quit smoking and by age 60 most have quit.

The lowest polygenic score group - lowest 60%, by age 40 half have quit smoking and by age 60 most have quit.

60% - 70% group – Median age of quitting smoking is 48

The lowest polygenic score group - lowest 60%, by age 40 half have quit smoking and by age 60 most have quit.

60% - 70% group – Median age of quitting smoking is 48

70% - 80% group – Median age of quitting smoking is 56

The lowest polygenic score group - lowest 60%, by age 40 half have quit smoking and by age 60 most have quit.

60%- 70% group – Median age of quitting smoking is 48

70%-80% group – Median age of quitting smoking is 56

80% - 90% group – At age 60, 67% continue to smoke

The lowest polygenic score group - lowest 60%, by age 40 half have quit smoking and by age 60 most have quit.

60%- 70% group – Median age of quitting smoking is 48

70%-80% group – Median age of quitting smoking is 56

80%-90% group – At age 60, 67% continue to smoke

Top 10% -At age 60, 90% continue to smoke

- ✓ Analytic validity
- ✓ Clinical validity
- ✓ Clinical utility
- \checkmark Ethical and social issues

✓ Analytic validity

- ✓ Analytic validity
- ✓ Clinical validity

✓ Analytic validity

✓ Clinical validity✓ Clinical utility

✓ Analytic validity
 ✓ Clinical validity
 ✓ Clinical utility

- ✓ Analytic validity
- ✓ Clinical validity
- ✓ Clinical utility
- \checkmark Ethical and social issues

The time is now for precision health

- A person's genetic variation predicts their difficulty quitting smoking and smoking related health outcomes.
- Those at highest genetic risk need to strongest treatment to successfully quit smoking.
- Should we consider harm reduction strategies for those at highest genetic risk?

Ariya Chaloemtoem

Washington University Kathleen Bucholz Patricia Cavazos-Rehg

Michigan State University

Naomi Breslau

Research Triangle Institute

Eric Johnson Dana Hancock

University of Minnesota

Dorothy Hatsukami

University of Michigan

Ovide Pomerleau

SRI International

Garv Swan Andrew Bergen

Queensland Australia

Nicholas Martin Grant Montgomery

Perlegen Sciences

Dennis Ballinger Karel Konvicka

American Cancer Society

Victoria Stevens

State University of New York Health Sciences Center - Brooklyn

Bernice Porjesz

Indiana University

Howard Edenberg Tatiana Foroud John Nurnberger, Jr.

University of California, San Diego

Marc Schuckit

University of Connecticut

Victor Hesselbrock

University of Iowa

Samuel Kuperman John Kramer

University of Wisconsin **Timothy Baker** Megan Piper Michael Fiore

Rutgers University

Jav Tischfield

Southwest Foundation

Laura Almasy

Virginia Commonwealth University Danielle Dick

Phenotypic and genetic data are available to gualified investigators through the NIDA Genetics Consortium and dbGaP.

LiShiun Chen Alison Goate Richard Grucza Sarah Hartz Anthony Hinrichs Pamela Madden Carrie Mintz Alex Ramsey John Rice Nancy Saccone Scott Saccone Jen Wang Sarah Bertelsen **Jingling Chen** Sherri Fisher Yiniiao Ma Louis Fox Joseph Mullaney Tracey Richmond Jaime Strickland

GENEVA Project

Funded by the National Institute on Alcohol Abuse and Alcoholism National Institute of Drug Abuse National Cancer Institute National Human Genome Research Institute

