Psychedelics for Addiction The Past, Present & Future

Rayyan Zafar

MRC PhD Fellow

Centre for Psychedelic Research

& Neuropsychopharmacology

Imperial college London

Drug Science

Imperial College London Drug
Science

Psychedelic therapy in the treatment of addiction: The past, present and future

Rayyan Zafar^{1, 2*}, Maxim Siegel^{1, 2}, Rebecca Harding³, Tommaso Barba^{1, 2}, Claudio Agnorelli^{1, 2}, Shayam Suseelan^{1, 2}, Leor Roseman^{1, 2}, Matthew Wall^{1, 4, 2}, David J. Nutt^{1, 2}, David Erritzoe^{1, 2}

¹Centre for Psychedelic Research, Imperial College London, United Kingdom, ²Neuropsychopharmacology Unit, Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom, ³Clinical Psychopharmacology Unit, University College London, United Kingdom, ⁴Invicro (United Kingdom), United Kingdom

Out next week!

"Psychological peak / mystical type experiences"

1. Rucker et al. 18; 2. Erritzoe et al 2011; 3. Nutt et al. 2010

Six LSD trials in alcoholism

Figure 2. Improvement on alcohol misuse at the first available follow-up after LSD versus control treatments. ^aContinuous outcome data.

Effect size > all current therapies

Krebs & Johansen 2012

The Present Modern clinical studies

Number of modern clinical trials in addiction & investment

Source: cbinsights.com

Psilocybin for alcoholism/smoking

0.80

0.60

0.40

MEQ Total Score

Bogenschutz et al 2015

5

-40.0

-60.0

0.00

r =-.885

p = .002

0.20

Long-term Follow-up of Psilocybin-facilitated Smoking Cessation

Matthew W. Johnson, PhD,¹ Albert Garcia-Romeu, PhD,¹ and Roland R. Griffiths, PhD^{1,2}

(A) Exhaled carbon monoxide (CO) shown for each participant from baseline through long-term follow-up (LT). (B) Urine cotinine levels shown for each participant from baseline through long-term follow-up. (C) Timeline Follow-back (TLFB) data of self-reported daily smoking; individual data points show individual participant data, with the group mean indicated by horizontal line; horizontal brackets indicate significant reductions between intake and each of 4 follow-up assessments (2-tailed paired *t*-tests, p < 0.001). (D) Relationship between average scores on the Mystical Experience Questionnaire (MEQ30) at the conclusion of each psilocybin session, and change in urinary cotinine levels from study intake to long-term follow-up. Data points show data from each of the 15 individual participants with best-fit linear regression.

JAMA Psychiatry

RCT: Psilocybin-Assisted Treatment of Alcohol Use Disorder

INTERVENTION

49 Psilocybin

mg/70 kg)

POPULATION

53 Men, 42 Women

Adults with alcohol dependence **Mean age, 45.8 y**

SETTINGS / LOCATIONS

2 Academic centers in New York and New Mexico

95 Individuals randomized

46 Diphenhydramine control Administered orally in 2 all-day sessions (dose range, 50-100 mg)

PRIMARY OUTCOME

Administered orally in 2 all-day

sessions (dose range, 25-40

Percent heavy drinking days (scale, 0-100), assessed using the timeline followback interview, contrasted between groups over the 32-wk period following the first administration of study medication.

FINDINGS

Percent heavy drinking days during the 32-wk double-blind period was lower in the psilocybin group compared with the diphenhydramine group

Percent heavy drinking days Psilocybin=9.7% Diphenhyramine=23.6%

Mean difference, 13.9 (95% CI, 3.0-24.7; P = .01)

Bogenschutz MP, Ross S, Bhatt S, et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. *JAMA Psychiatry*. Published online August 24, 2022. doi:10.1001/jamapsychiatry.2022.2096

© AMA ©

The Future

Theoretical concepts

Where can we make a start?

- 1. Reward system Multimodal neuroimaging investigations of the mesocorticolimbic and salience system and how psychedelics modulate these
- 2. Neuroplasticity how psychedelics can increase the efficiency of learning in neuronal tissues

Circuits/Systems

Molecular

Cue-Reactivity

Psychedelics can expand state of consciousness and the brain states

- Is this how they might treat addiction?
- Re-engage an individual with the world they live in

Re-connect - re-calibrate - re-broaden reward?

Can psychedelics change key brain pathways driving addiction? Reward, motivation/drive, memory, control

<u>With special thanks to</u>

Centre for Psychedelic Research & Neuropsychopharmacology CIPPres Clinic team Prof David Nutt (Imperial) Dr David Erritzoe (Imperial) Dr Matt Wall (Invicro)

Prof Robin Carhart-Harris (UCSF)

THE CENTRE FOR PSYCHEDELIC RESEARCH

Email: r.zafar19@imperial.ac.uk

Twitter: @RayyanZafar6